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Abstract—A new application of the NN ensemble technique 
to improve the accuracy and stability of the calculation of NN 
emulation Jacobians is presented.  The term “emulation” is 
defined to distinguish NN emulations from other NN models.  It 
was shown that, for NN emulations, the introduced ensemble 
technique can be successfully applied to significantly reduce 
uncertainties in NN emulation Jacobias to reach the accuracy 
sufficient for the use in data assimilation systems.  An NN 
ensemble approach is also applied to improve the accuracy of 
NN emulations themselves.  Two ensembles linear, conservative 
and nonlinear (uses an additional averaging NN to calculate the 
ensemble average) were introduced and compared.  The 
ensemble approaches: (a) significantly reduce the systematic 
and random error in NN emulation Jacobian, (b) significantly 
reduces the magnitudes of the extreme outliers and, (c) in 
general, significantly reduces the number of larger errors, (d) 
nonlinear ensemble is able to account for nonlinear correlations 
between ensemble members and improves significantly the 
accuracy of the NN emulation as compared with the linear 
conservative ensemble in terms of systematic (bias), random, 
and lager errors.   

I. INTRODUCTION 
he simplest multi-layer perceptron (MLP) neural 
network (NN) is a generic analytical nonlinear 

approximation or model for nonlinear (continuous) 
mappings [1].  The MLP NN uses for the approximation of 
mappings a family of functions like: 

 
(1)                                                                                                           

 
where xi and yq are components of the input and output 
vectors respectively, a and b are fitting parameters. 

A mapping between two vectors X (input vector) and Y 
(output vector) or target mapping can be symbolically 
written as: 

 
(2) 

                                                    
A large number of important practical geosciences 
applications may be considered mathematically as a 
mapping (2) [2-9].  The regular NN approximation technique 
provides a NN approximation with sufficiently small 
approximation errors on the training set; however, it does 
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not guarantee, without additional constrains, a satisfactory 
generalization (interpolation) capability of the NN 
approximations.    However, in some applications [2-8] the 
necessity arises to improve the generalization (interpolation) 
accuracy of developed NN approximations.  We have 
developed a NN emulation technique to emulate these 
mappings with high approximation and interpolation 
accuracy [2-6] (see also section 2 of this paper).  In some 
applications, developed NN emulations of mappings (2) are 
used for inversion [3], in a data assimilation system (DAS) 
[7] or for error or/and sensitivity analysis.  In all these cases 
not only the mapping (2) but also its first derivative are used.  
It means that the NN emulation Jacobian that is a matrix of 
the first derivatives of the outputs of the NN emulation (1) 

over its inputs,

mq

nii

q

x
y ,...,1

,...,1

=

=







∂
∂

, has to be calculated.  From a 

technical point of view, the calculation of the Jacobian is 
almost trivial.  It is performed by an analytical 
differentiation of eq. (1).  However, from a theoretical point 
of view, the inference of the NN Jacobian is an ill-posed 
problem [10] which leads to significant uncertainties in 
calculated NN Jacobians [11-13].        

For such applications that require an explicit calculation 
of the NN Jacobian, several solutions have been offered and 
investigated to reduce the NN Jacobian uncertainties: (i) the 
Jacobian can be trained as a separate additional NN [4]; (ii) 
the mean over the data set Jacobian can be calculated and 
used [11]; (iv) regularization techniques like “weight 
smoothing”  [12] or the technique based on a principle 
component decomposition [13] can be used to stabilize the 
Jacobians; (v) the Jacobian can be trained: included in the 
training data set and as actual additional outputs in the NN; 
the error (or cost) function, which is minimized in the 
process of NN training, can be modified to accommodate the 
Jacobian; in other words, the Euclidian norm, which is 
usually used for calculating the error function, should be 
changed to the first order Sobolev’s norm.  Actually, Hornik 
et al. [14] showed that the function of the Sobolev’s space 
can be approximated with all their derivatives.  This and 
other similar theoretical results are very important because 
they prove the existence of the approximation; however, 
they do not suggest explicit approaches.   

In this paper we introduce a new, NN ensemble approach 
to reduce uncertainties in calculated NN emulation 
Jacobians.  NN ensemble approaches have been introduced 
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by many authors [15-20].  They were used to improve NN 
classification, NN approximation and NN generalization 
abilities.  To the best of our knowledge, this work is the first 
one that introduces an application of a NN ensemble 
technique for reducing uncertainties of NN emulation 
Jacobians.   

In this paper we also compare a conservative ensemble 
[20] where simple (with equal weights for all members) 
averaging of the members provides the ensemble mean and 
other statistics with a nonlinear ensemble where an 
averaging NN is introduced that takes into account nonlinear 
correlations between ensemble members.  This averaging 
NN, given ensemble members as inputs, generates a 
nonlinear ensemble average.    

In section 2 of this paper we define NN emulation of 
complex mappings; we also discuss a generic approach to 
use NN ensembles to improve the accuracy of the NN 
emulation Jacobian and the NN emulation.  In section 3 we 
illustrate these approaches using as a test bed a particular 
practical application that is described in details in [7], a NN 
emulation for the ocean surface elevation mapping in an 
ocean numerical model.  Conclusions are presented in 
section 4.   

II. BACKGROUND: NN EMULATIONS AND NN ENSEMBLE 
APPROACHES TO NN EMULATIONS AND NN EMULATION 

JACOBIANS 

A. NN Emulations of Complex Mappings 
In this paper, we use the terms an emulating NN or a NN 

emulation for NN (1) that provides a functional emulation 
of the target mapping (2) that implies a small approximation 
error for the training set and smooth and accurate 
interpolation between training set data points inside the 
mapping domain D.  The term “emulation” is introduced to 
distinguish between these NNs and approximating NNs or 
NN approximations that guarantee small approximation 
error for the training set only. 

When an emulating NN is developed, in addition to the 
criterion of small approximation error at least three other 
criteria are used: (i) the NN complexity (proportional to the 
number k of hidden neurons when other topological 
parameters are fixed) is controlled and restricted to a 
minimal level sufficient for good approximation and 
interpolation; (ii) independent validation and test data sets 
are used in the process of training (validation set) to control 
overfitting and after the training (test set) to evaluate 
interpolation accuracy; (iii) redundant training set 
(additional redundant data points are added in-between 
training data points sufficient for a good approximation) is 
used for improving the NN interpolation abilities. 

The correspondence between the emulating NN 
complexity and the target mapping complexity is usually 
better than for an approximating NN with the same 
approximation error.  An emulating NN complexity is 
usually close to the minimal one; thus, the emulating NN is 

usually faster.  It usually provides better interpolation 
generalization and better resolution of the target mapping at 
the same approximation accuracy. 

 

B. Multiple NN Emulation Solutions and Ensemble 
Approach  
As a nonlinear model or nonlinear approximation of the 

mapping (2), the NN approximation problem allows for 
multiple solutions or for multiple NN emulations (1) for the 
same mapping (2).  Existence of multiple solutions is a 
common property of nonlinear models, or of nonlinear 
approximations.  These models have nonlinear parameters 
that may be changed to generate solutions, which may be 
close in terms of satisfying to a particular criterion (e.g., 
approximation error) used for obtaining the solutions.  For 
example, the same mapping (2) can be approximated with 
NNs (1) with different numbers of hidden neurons, with 
different weights (resulting from the NN training with 
different initializations), different partitions of the training 
set, etc.  At the same time, these multiple models (NNs) may 
be different in terms of other criteria providing 
complementary information about the target mapping (2).  
The availability of multiple solutions may lead to some 
inconveniences like a necessity to introduce an additional 
step that is to use additional criteria to select a single, 
optimal model or problems like uncertainties or multiple 
solutions for the NN emulation Jacobian.  The existence of 
multiple and significantly different solutions for the NN 
Jacobian is a consequence of the fact that the statistical 
inference of the NN Jacobian is an ill-posed problem [10].   

On the positive side, availability of multiple models (NN 
emulations and NN emulation Jacobians), providing 
complimentary information about the target mapping (2) and 
its Jacobian, opens an opportunity to use ensemble 
approaches.  It allows for integrating the complimentary 
information, containing in the ensemble members, into an 
ensemble that “knows” more about or represents the 
mapping (2) and its Jacobian better than each of the 
individual ensemble members (a particular NN emulation, or 
a particular NN emulation Jacobian).   

 An ensemble of NNs consists of a set of members, that 
are individually trained NNs.  They are combined when 
applied to a new input data to improve the generalization 
(interpolation) ability.  The previous research showed that an 
ensemble is often more accurate than any or most of the 
individual member of the ensemble.   

The previous research also suggests that any mechanism 
that causes some randomness in or perturbation for the 
formation of NN ensemble members can be used to form an 
accurate NN ensemble [16].  For example, ensemble 
members can be created by training different members: (a) 
on different subsets of the training set [16]; (b) on different 
subdomains of the training domain; (c) using NNs with 
different topology (different number of hidden neurons) 
[17]; (d) using NNs with the same architecture but with 
different initial conditions for NN weights [18,19].   
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In the context of our application, i. e. approximation of a 
complex mapping (2), the members of the ensemble are 
separately trained NNs which provide emulations for the 
target mapping with slightly different approximation and 
interpolation accuracies.  Because of the properties of the 
NN emulations described in subsection A, we can expect 
that these emulations do not oscillate strongly between the 
training set data points.  It means that the spread of the 
emulation accuracy and, what is even more important, the 
spread between different solutions for the NN Jacobian (the 
Jacobian uncertainties) are limited.  We can expect that the 
ensemble average will provide a better approximation and 
interpolation than its individual members.   

 

C. Conservative Ensemble vs. Nonlinear NN ensemble 
Different ways of combining NN ensemble members into 

the ensemble have been developed and investigated [15].  In 
this work, we start from using a conservative ensemble [20] 
where simple (with equal weights for all members) 
averaging of the members provides the ensemble mean and 
other statistics. The conservative ensemble or its 
modifications (linear averaging with non-equal weights) are 
mostly popular in applications.  However, these approaches 
cannot account for possible nonlinear correlations between 
ensemble members. In this paper we also use a nonlinear 
averaging approach, a NN ensemble averaging, with an 
averaging NN that takes into account nonlinear correlations 
between ensemble members.  This NN is trained given 
ensemble members as inputs to generate a nonlinear 
ensemble average.  It is shown that this approach may 
additionally (as compared with the conservative ensemble) 
significantly reduce the random and systematic components 
of approximation and interpolation errors. 

 

III. APPLICATIONS OF THE NN ENSEMBLE APPROACH 
  

Here we introduce an application of the NN ensemble 
approach in the context of our NN application described in 
[7] – the NN emulations for functional nonlinear 
dependencies and mappings between atmospheric or ocean 
state variables that are implicitly contained in the highly 
nonlinear coupled partial differential equations of an 
atmospheric or ocean dynamical model and, therefore, in 
numerical outputs of these models.   

In particular, in a layered ocean model the sea surface 
height (SSH or η) signal depends in part on the disposition 
of the layers in a vertical column.  Therefore, this 
dependence, after emulation it with NN, can be written as 

 
)(XNNNN φη =                                         (3) 

where NNφ  is a NN and X is a vector that represents a 
complete set of state variables, which determines SSH.  In 
this particular case the vector X was selected as 

},,{ mixzIX θ= , where I is the vector of interfaces (vertical 
coordinates used in ocean model HYCOM, see [7] for 
description of the model), θ is the vector of potential 
temperature, and  zmix is the depth of the ocean mixed layer 
(a total of 50 variables).   

An analytical NN emulation (3) for the relationship 
between model state variables, X, and sea surface height, η, 
was derived using the simulated model fields which are 
treated as error free data [7].  A simulation that covers 
almost two years (from Julian day 303, 2002 to 291, 2004) 
was used to create training, validation and test data sets.  The 
periods covered by these data sets and their sizes are shown 
in Table 1.  Each data set consists of records {ηi, Xi}i = 1,…,N 
collocated in space and time and uniformly distributed over 
the model domain. 
 
TABLE 1.    PERIODS COVERED BY TRAINING, VALIDATION AND TEST DATA 

SETS AND THEIR SIZES. 
Set Beginning Date 

(Julian day, 
year) 

End Date 
(Julian day, 

year) 

Size, N 
(number of 

profiles) 

Training 303, 2002 52, 2004 563,259 

Validation 303, 2002 52, 2004 563,259 

Test 53, 2004 291, 2004 563,259 

 
 In the context of the problem described in the previous 

subsection, the NN ensemble approach leads to the 
following solution.  The complexity of the NN emulation (3) 
was limited; only three hidden neurons were allowed.  Then 
ten NN emulations (3) with the same number of the hidden 
neurons (three) were trained using differently perturbed 
initial conditions for the NN weights.  As a result, a NN 
ensemble that consists of ten members, ten NN emulations 
with identical architecture (50 inputs, 3 hidden layers, and 1 
output) but different weights and different approximation 
accuracies, has been created.   

 

A. NN Ensembles for Reducing Uncertainties of the NN 
Jacobian  
The NN emulation (3) can be used in the ocean DAS to 

enhance assimilating SSH and to improve the propagation of 
the surface SSH signal to other vertical levels and other           
variables.  In the ocean DAS the increment of the SSH, ∆η, 

is calculated using the NN Jacobian nii

NN

X
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where ∆Xi are increments of state variables, X0 is an initial 
value of state variables and n is the dimensionality of the 
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vector X (the number of inputs of the NN emulation (3)).  
Then the calculated ∆ηNN is compared with the observed 
∆ηobs and the difference is used to adjust ∆X. 

The quality of the single NN Jacobian may not be 
sufficient for the use in DAS applications.  However, an 
ensemble approach can be used to improve the NN Jacobian 
calculations.  The NN ensemble described above was used 

here o create an ensemble of ten NN Jacobians 

ensj

nii

j
NN

X

,..,1

,..,1

=

=
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





∂
∂φ

, 
where ens = 10 is the number of the ensemble members.  
Then the ensemble average Jacobian has been calculated, 

ni
XensX

ens

j i

j
NN

i

NN ,...,1,1
1

=
∂

∂=
∂
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=

φφ             (5)                                                             

 
Now, eq. (4) was used to calculate ∆ηNN using each ensemble 
member Jacobian and the ensemble average Jacobian (5).  
These values of ∆ηNN were compared with exact ∆η known 
from the model simulation.   

This comparison technique was applied to the last day of 
the entire model simulation.  This day is separated by the 
time interval of about 8 month from the last day of 
simulation used for NNs training and validation.  Fields 
generated by the model at 00Z were used to create inputs, X, 
for the NN emulation Jacobians.  Then the NN emulation 
Jacobian ensemble members were applied (4) over the entire 
domain (with coastal areas excluded) to generate an 

ensemble of 2-D field of 
j

NNη∆  and calculate NNη∆  using in 
(4) the ensemble average Jacobian (5).  Also a non-
dimensional distance in the model state space between 
vectors X0 and X = X0 + ∆X was introduced, 

2

1 0

1∑
=







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n

i
i
i

X
X

n
S                              (6)                                

                                                                                                 
These fields were compared with the corresponding field of 
SSH, η, generated by the model.  We performed also 
multiple case studies for particular locations inside the 
model domain.  Results of one of this study are presented in 
Figs. 1-4.   
 

 
Fig.1. The location of the cross section (white horizontal line) inside the 

model domain; white dot show the position of X0.   

 
Fig. 1 shows the location of the cross section (white 

horizontal line) inside the model domain; white dot show the 
position of X0.  Starting from this position we moved left and 
right grid point by grid point using X values at these grid 
points to calculate ∆ X and the non-dimensional distance in 
the model state space, S (6).  These values of ∆X were used 
in (4) to calculate ∆η.   

 

 
Fig.2. ∆η calculated using (4) and the NN ensemble member Jacobians 

(an envelope of thin solid lines that illustrates the Jacobian uncertainties), 
exact ∆η calculated from the model (thick solid line), and ∆η calculated 
using the ensemble average Jacobian (5) (thick dashed line).  ∆η is shown 
vs. the distance in the model state space, S (6).  

 
Fig. 2 shows ∆η calculated using (4) and the NN ensemble 

member Jacobians (an envelope of thin solid lines that 
illustrates the Jacobian uncertainties), exact ∆η calculated 
from the model (thick solid line), and ∆η calculated using 
the ensemble average Jacobian (5) (thick dashed line).  ∆η is 
shown vs. the distance in the model state space, S.  This 
figure demonstrates how significantly using of the ensemble 
average improves the NN Jacobian.  The larger are the 
distances S the more significant is the reduction of the 
Jacobian uncertainties. 

 
Fig.3. The systematic error (bias) and the random error (error standard 

deviation) for ∆η calculated along the path shown in the upper right panel 
using (4).  The asterisks correspond to errors when the ensemble member 
Jacobians were used in (4), the cross corresponds to the case when the 
ensemble average Jacobian (5) was used.   
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Fig.4. The minimum and maximum errors along the path.  The asterisks 

correspond to errors when the ensemble member Jacobians were used in 
(4), the cross corresponds to the case when the ensemble average Jacobian 

(5) was used.   
 

Fig. 3 shows the systematic error (bias) and the random 
error (error standard deviation) for ∆η calculated along the 
path shown in the upper right panel using (4).  The asterisks 
correspond to errors when the ensemble member Jacobians 
were used in (4), the cross corresponds to the case when the 
ensemble average Jacobian (5) was used.  The ensemble bias 
is equal to the mean bias of the members as it can be 
expected using this simple method of calculating the 
ensemble average.  This figure also shows that in the case of 
Jacobian the ensemble approach is very effective in reducing 
random errors; it shows that ensemble random error (1.1 cm) 
is less than the random error of any of the ensemble 
members.  The reduction in systematic (~90%) and random 
(~65%) errors with respect to the maximum single member 
errors is very significant. 

Fig. 4 shows minimum and maximum errors along the path 
or statistics for extreme outliers.  When each ensemble 
member NN Jacobian is applied in (4), for each particular 
input the NN produces an error.  Among all these error there 
exist one largest negative (or minimum) error and one 
largest positive (or maximum) errors or two extreme outliers 
that demonstrate the worst case behavior (scenario) that we 
can expect from this particular NN emulation.  These two 
extreme outliers (negative and positive) are presented as a 
star for each NN member in the figure.  The ensemble 
average Jacobian (5), when used in (4), also generates such 
two extreme outliers that are presented as the cross in the 
figure.  The figure shows that the NN ensemble approach is 
also an effective tool in reducing (~4 times) large errors in 
NN Jacobians.   
 Next we applied the same procedure at all grid points of 
the model domain.  The errors have been calculated along 
numerous paths (horizontal and vertical) all over the model 
domain. Fig. 5 shows RMS error in ∆η as a function (binned 
and averaged in each bin) of non-dimensional distance S 
over entire domain.  Thin lines correspond to the ensemble 
members (an envelope of thin solid lines illustrates the 
Jacobian uncertainties) and the thick line shows the 
ensemble result.  The ensemble significantly improves 

statistics at all considered distances S.  The ensemble is 
always better than the best ensemble member.  
 

 

 
 

Fig.5.  Errors in ∆η as a function (binned and averaged in each bin) of non-
dimensional distance S over entire model domain.  Thin lines correspond to 

the ensemble members and the thick line shows the ensemble result.   
 
 To better understand the magnitudes of errors presented in 
this and the next section, these magnitudes should be 
compared with the errors in observed satellite data ∆ηobs 
assimilated in the oceanic DAS [7].  The accuracy of the 
observed data is about 5 cm.  It means that our NN 
emulation (3) and ensemble techniques allow us to reduce 
the Jacobian uncertainties and produce the ensemble 
Jacobian (5) that is sufficiently accurate to be used in ocean 
DASs. 
  

B. Ensemble Approach to Improve Emulation Accuracy;  
Linear and Nonlinear Ensembles  
Here we apply the NN ensemble in a more traditional 

mode to improve the accuracy of the NN emulation (3) (see 
also [8].  After the NN ensemble (see above) was created, 
each NN member (that is a particular realization of the NN 
emulation (3)) was applied to the test set and the error 
statistics for each NN member was calculated and plotted in 
Fig. 6. The vertical axis of the figure shows the random part 
of the approximation error (the standard deviation of the 
error) and the horizontal axis – the absolute value of the 
systematic error (bias).  Both errors are normalized to the 
corresponding maximum member error (maximum member 
bias or maximum member error standard deviation).  Each 
ensemble member is presented by a star at this figure.  The 
figure illustrates the spread of the ensemble members; it is 
significant.  For different members, the systematic error 
changes about 25% and the random error – about 10%.   
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Fig. 6.  Vertical axis shows the random part of the emulation error (the 

standard deviation of the error) normalized to the maximum member error 
and the horizontal axis – the systematic error (bias) also normalized to the 
maximum member error.  Each ensemble member is represented by a star, 

the conservative ensemble average – by the cross, and the nonlinear 
ensemble using the averaging NN by diamond at the figure.   

 
The next step was to produce the ensemble average.  

Ensemble average can be produced in different ways [20].  
The first averaging approach that we used here is the 
simplest and linear method of ensemble averaging – 
conservative ensemble [20].  Each of ten members of the NN 
ensemble was applied to the test set record by record.  Thus, 
for each record, for each set of inputs, ten NN outputs were 
produced.  Then, the mean value (in a regular statistical 
sense) of these ten numbers was calculated and used to 
compare with the exact output to calculate ensemble 
statistics presented by the cross in Fig. 6.  The ensemble bias 
is equal to the mean bias of the members as it can be 
expected using this simple linear method of calculating the 
ensemble average.  Fig. 6 also illustrates a known fact that 
ensemble approaches are very effective in reducing random 
errors; it shows that ensemble random error is less than the 
random error of any of the ensemble members.  The 
reduction in systematic (~15%) and random (~9%) errors 
with respect to the maximum single member errors is not 
large but significant.    

Conservative ensemble is simple; however, it is linear; it 
completely neglects nonlinear correlations and dependencies 
between ensemble members.  То estimate the contribution of 
these nonlinear correlations and to use these correlations to 
improve ensemble averaging we developed a nonlinear 
ensemble that uses an additional averaging NN to calculate 
the ensemble average.  Schematically this approach is 
illustrated in Fig. 7.  The inputs of the averaging NN are 
constituted from the outputs of the ensemble member NNs. 
The number of inputs of the averaging NN is equal to the 
number of ensembles multiplied by the number of outputs in 
a single ensemble member NN (10 in our case).  It has the 
same outputs as a single ensemble member NN (one in our 
particular case).  The averaging NN was trained using 
training and 

 

 
 

Fig. 7  Schematic representation of a nonlinear ensemble that uses an 
averaging NN.  A tilde over the averaging NN output Y emphasizes that a 
nonlinear ensemble average is produced.  X is an input of the emulation (3). 
 
validation sets prepared on the basis of the training and 
validation sets used for training the ensemble member NNs.  
The test statistics presented here were calculated using the 
test set. 

Fig. 6 shows statistics for nonlinear ensemble using the 
averaging NN with diamond.  It shows that the magnitude of 
the nonlinear correlations between ensemble members is 
significant and can be successfully used to improve 
ensemble accuracy.  Comparison of the position of the cross 
and the diamond in Fig. 6 shows that, as compared with the 
conservative ensemble, the nonlinear ensemble gives an 
additional improvement in bias of order of 10%.  The 
nonlinear ensemble bias is close to the minimum ensemble 
member bias.  An additional improvement in the random 
error is a bit smaller (about 5%) but significant.    

Fig. 8 shows statistics for extreme outliers.  When each 
ensemble member NN is applied to the test set, for each 
record the NN produces an error.  Among all these error 
there exist one largest negative (or minimum) error and one 
largest positive (or maximum) errors or two extreme outliers 
that demonstrate the worst case behavior (scenarios) we can 
expect from this particular NN emulation.  These two 
extreme outliers are presented as a star for each NN member 
in Fig. 8.  Each ensemble also generates such two extreme 
outliers that are presented as the cross for the conservative 
ensemble and a diamond for the nonlinear ensemble in Fig. 
8. 

Fig. 8 shows that the NN ensemble approach is an 
effective tool in reducing extreme outliers (~25%).  
However, a careful analysis of the figure reveals also very 
interesting features of the statistics presented in this figure.  
The distribution of starts shows a significant spread.  It also 
demonstrates a significant clustering and correlation 
between extreme outliers produced by ensemble members.  
These facts and the position of the conservative ensemble 
(cross) in the figure suggest that the members of the 
ensemble are nonlinearly correlated.  A significant 
improvement introduced by the nonlinear ensemble 
(diamond) supports this conclusion.  
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Fig.8.  Extreme outliers statistics.  Vertical axis shows the largest positive 

(or maximum) and the horizontal axis – the largest negative (or minimum) 
emulation error over the entire test set.  Each ensemble member is 

represented by a star, the conservative ensemble – by the cross, and the 
nonlinear ensemble – by the diamond at the figure.   

   

IV. CONCLUSION 
In this paper, we have presented a new application of the 

NN ensemble technique to reduce the uncertainties and 
improve the accuracy of the NN emulation Jacobian.  We 
defined the term “emulation” and show why it is important 
to distinguish NN emulations from other NN models.  We 
introduced an ensemble technique and showed that, for NN 
emulations, this ensemble technique can be successfully 
applied to significantly reduce uncertainties in NN emulation 
Jacobias.  In the framework of an ocean data assimilation 
application [7] we showed that our ensemble approach 
allows to calculate the NN emulation Jacobian with the 
accuracy sufficient for the use in the data assimilation 
system.  The ensemble approach: (a) significantly reduces 
the systematic and random error in NN emulation Jacobian, 
(b) significantly reduces the magnitudes of the extreme 
outliers and, (c) in general, significantly reduces the number 
of larger errors.  

Here and in [8] we have also applied the NN ensemble 
approach to improve the emulation accuracy of NN 
emulations of complex multidimensional mappings.  In 
particular, in [8] we applied this technique to NN emulations 
we developed for the LWR parameterization of NCAR 
CAM.  In this paper, we applied the NN ensemble technique 
to a mapping developed in the framework of an ocean data 
assimilation application [7].  This mapping and the 
corresponding NN emulation relate the sea surface elevation 
to a vector of oceanic state variables.  We introduced and 
compared two NN ensembles: (1) a linear conservative 
ensemble estimating the ensemble average as a simple linear 
mean of the ensemble members, and (2) nonlinear NN 
ensemble that uses a special NN to estimate a nonlinear 
ensemble average given ensemble members.  We have 
shown that practically all individual NN emulations that we 
have trained in the process of development of an optimal NN 
emulation, can be used, within the NN ensemble approach 

for improving generalization (interpolation) ability of our 
NN emulations: (a) significantly reducing the systematic and 
random interpolation error, (b) significantly reducing the 
magnitudes of the extreme outliers and, (c) in general, 
significantly reducing the number of larger errors.  It was 
also shown that nonlinear ensemble is able to account for 
nonlinear correlations between ensemble members and 
improves significantly the accuracy of the NN emulation as 
compared with the linear conservative ensemble in terms of 
systematic (bias), random, and lager errors.   
 

ACKNOWLEDGMENT 
The author thanks Dr. M. S. Fox-Rabinovitz for 

stimulating discussions and Dr. C. Lozano for discussions of 
an oceanic application used in this work. 

REFERENCES 
[1] K. Funahashi, “On the Approximate Realization of Continuous 

Mappings by Neural Networks”. Neural Networks, 2, pp. 183-192,  
1989. 

[2] V. Krasnopolsky, L. C. Breaker, and W. H. Gemmill, “A neural 
network as a nonlinear transfer function model for retrieving surface 
wind speeds from the special sensor microwave imager”, J. Geophys. 
Res., 100, pp. 11033–11045, 1995. 

[3] V. M. Krasnopolsky, W. H. Gemmill, and L. C. Breaker, “A multi-
parameter empirical ocean algorithm for SSM/I retrievals”, Canadian 
Journal of Remote Sensing, 25, pp. 486–503, 1999.  

[4] V.M. Krasnopolsky, D.V. Chalikov, and H.L. Tolman, “A neural 
network technique to improve computational efficiency of numerical 
oceanic models”, Ocean Modelling, 4, pp. 363-383, 2002. 

[5] V.M. Krasnopolsky, M.S. Fox-Rabinovitz, and D.V. Chalikov, "New 
Approach to Calculation of Atmospheric Model Physics: Accurate and 
Fast Neural Network Emulation of Long Wave Radiation in a Climate 
Model", Monthly Weather Review, v. 133, No. 5, pp. 1370-1383, 
2005. 

[6] V.M. Krasnopolsky and M.S. Fox-Rabinovitz , “Complex Hybrid 
Models Combining Deterministic and Machine Learning Components 
for Numerical Climate Modeling and Weather Prediction”, Neural 
Networks, 2006, in press 

[7] V. M. Krasnopolsky, et al., “Using Neural Network to Enhance 
Assimilating Sea Surface Height Data into an Ocean Model”, 
Proceedings of the IJCNN2006, July 16-21, 2006, Vancouver, BC, 
Canada, 2006, in press 

[8] M.S. Fox-Rabinovitz, V.M. Krasnopolsky, and A. Belochitski, 
“Neural Network Ensemble Approach for Improving the Accuracy of 
Climate Simulations that use Neural Network Emulations of Model 
Physics ”, Proceedings of the IJCNN2006, July 16-21, 2006, 
Vancouver, BC, Canada, 2006, in press 

[9] W.W. Hsieh, “Nonlinear principle component analysis by neural 
networks”, Tellus, 53A, pp. 599-615, 2001 

[10] V.N. Vapnik, The Nature of Statistical Learning Theory, 189 pp., 
Springer, New York, 1995. 

[11] F. Chevallier, and J-F Mahfouf, “Evaluation of the Jacobians of 
Infrared Radiation Models for Variational Data Assimilation”, J. Appl. 
Meteor., 40, pp. 1445-1461, 2001. 

[12] F. Aires, M. Schmitt, A. Chedin, and N. Scott, “The “Weight 
Smoothing” Regularization of MLP for Jacobian Stabilization”, IEEE 
Trans. Neural Networks, 10, pp. 1502-1510, 1999. 

[13] F. Aires, C. Prigent, and W.B. Rossow, “Neural network uncertainty 
assessment using Bayesian statistics with application to remote 
sensing: 3. Network Jacobians”. J. Geophys. Res., 109, D10305, 2004. 

[14] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation 
of an unknown mapping and its derivatives using multilayer 
feedforward networks”, Neural Networks, 3, pp. 551-560, 1990.   

[15] U. Naftaly, N. Intrator, and D. Horn, “Optimal ensemble averaging of 
neural networks”, Network: Comput. Neural Syst., 8, pp. 283-294, 
1997 

9343



 

[16] D. Opitz, and R. Maclin, “Popular ensemble methods: an empirical 
study”, J. Artificial Intelligence Res., 11, pp. 169-198, 1999. 

[17] S. Hashem, “Optimal linear combination of neural networks”, Neural 
Networks, 10, pp. 599-614, 1997. 

[18] R. Maclin, and J. Shavlik, “Combining the predictions of multiple 
classifiers: using competitive learning to initialize neural networks”, 
in Proceedings of the Eleventh International Conference on Artificial 
Intelligence, pp.775-780, Detroit, MI, 1995 

[19] A. J. C. Sharkey, “On combining artificial neural nets”, Connection 
Science, 8, pp. 299-313, 1996. 

[20] S.V. Barai and Y. Reich, “Ensemble modeling or selecting the best 
model: Many could be better than one”, Artificial Intelligence for 
Engineering Design, Analysis and Manufacturing, 13, pp. 377-386, 
1999 

9344


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Search Results
	Print



